

LOST IN WORKFLOW?

THE 5-STEP PROCESS BLUEPRINT

Step 1: Figuring Things Out

Let's understand how things work now — before we try to change or improve anything.

1. What's Our Goal?

First Thing: Get the Boss's Okay

We need a leader to approve the project. This makes sure everyone will cooperate and that we have the tools we need to get the job done.

The Four Big Questions We Must Answer:

- What?
 The exact task
 or job we're
 - or job we're looking at.
- Where?
 The specific country, team, or department.
- When?The time period

we're studying (e.g., the last year).

Why?

The problem
we're trying to
solve (e.g.,
making things
faster or finding

mistakes).

2. Getting Info from the Experts

The biggest challenge is that experts know how to do their job without thinking. Our mission is to get that "secret knowledge" out of their heads and onto a clear map that everyone can understand.

Goal: See How It "Really Works"

We need to map out every single real-life step, not just a simple summary. Think of it like an X-ray that shows everything happening inside.

What Our Map Should Show:

- All the Pieces:

 Identify all the
 different tasks
 that are
 connected.
- The Levels: Break down big jobs into their
- smaller, individual steps.
- The Path:
 Show the exact order of steps, including any decisions that change the path.

3. Adding Details to Our Map

A simple map of the steps isn't enough. To really understand what's going on, we need to add more details.

The Path: The Backbone

This is the sequence of steps from start to finish.

The Info

What data, files, or forms are used or created in a step?

The Time

How much time does each step take to complete?

The People & Tools

Who does the work, and what software or equipment do they use?

The Rules

What specific business rules must be followed for a step?

4. The Project Team

To succeed, we need to know who is playing each key role on the team.

The Boss (Sponsor)

The leader who starts the project, sets the goals, and makes sure the team has what it needs.

The Expert (SME)

The person who does this job every day. They are the source of all the real-world information and details.

The Detective (Analyst)

The person who asks questions, gathers all the info from the Experts, and puts it all together to build the map.

Step 2: Finding the Problems

The Process X-Ray: We'll use the map we made to find slow spots, weaknesses, and wasted effort.

1. Get Our Starting Score

First, we measure how things are working now. We turn our map into a scoreboard with real numbers.

Add Performance Numbers:

We add data like time and cost directly onto our process map to see how well things are working.

Measure Important Times:

We check how long a task takes (work time) and how long it sits waiting (wait time).

Check Goals:

We see if we're meeting our promises, like responding to customers quickly enough.

Get a "Before" Picture:

This gives us a baseline, so we can prove our changes made things better later.

2. Does Real Life Match the Rulebook?

We compare how work is actually done with how it's supposed to be done according to the rules.

Find Differences:

The main goal is to find and understand any shortcuts or different paths people are taking.

Check the Map:

We see how often the real work follows the steps on our official map.

Check for Unused Steps:

We also check if our map includes extra, unnecessary steps that nobody ever does in real life.

Pinpoint Deviations:

This helps us see exactly where people are going off-script and understand why.

3. Play Detective: Find the Real Cause

Now we dig deeper to find the root cause of problems, not just the symptoms that we see on the surface.

Find the "Why":

We want to discover what truly *causes* a delay, not just observe that delays are happening.

Look for Links:

We use smart tools to see if certain situations (like a high-dollar order) are linked to more problems.

Get Clues:

Finding these links gives us important clues about where to focus our improvement efforts for the biggest impact.

4. What's Stopping Us from Fixing It?

We need to figure out what roadblocks might prevent our new, better process from working in the real world.

List Roadblocks:

We identify all the things that could block our changes and all the things that could help.

Find Contradictions:

Sometimes, a single thing can be both helpful and harmful. We need to identify these tricky situations.

Prepare for Challenges:

Thinking about this now helps us get ready for challenges before we start building the solution.

Step 3: Creating the New Plan

Let's design the new and improved "To-Be" process — turning our findings into a blueprint for the future.

1. Design the New, Better Process

We'll create a new process map that is specifically designed to fix the weaknesses we found in Step 2.

Make it Error-Proof:

The new plan must be logical and free of dead-ends or problems.

Block Bad Paths:

If certain ways of working led to bad results (like high costs), the new plan won't allow them.

Encourage Good Paths:

If other ways of working led to great results, the new plan will make them the standard.

2. Fix the Old Map to Match Reality

Sometimes, we need to update our original map to include the good, real-life variations we discovered.

Goal: Perfect Fit:

The main goal is to create a map that perfectly matches how things are really done.

Keep it Simple:

We want to make the fewest changes possible while making the map more accurate.

Create a Better Starting Point:

This repaired map helps us better understand the real work that people do every day.

3. Make Sure the New Plan is Balanced

A good plan has to be balanced. It can't be too simple or too complicated to be useful.

Accurate:

The plan must match the real work that needs to be done.

Precise:

It shouldn't include a bunch of extra steps or possibilities that will never happen.

Flexible:

It should be general enough to handle new situations without breaking

Simple:

It should be as easy to understand as possible, with no unnecessary complexity.

4. Create the Instruction Manual for Coders

Our new, detailed plan becomes the perfect instruction manual for the IT team to build the final solution.

Clear Instructions:

The design gives developers a clear list of what the new software or system needs to do.

No Guesswork:

It defines all the rules and requirements, so nothing important is missed.

Confirms All Steps:

The blueprint confirms every activity that must be included in the new solution.

5. Plan How to Use Existing Software

We check if we can use existing software (like SAP or Salesforce) and plan how to set it up.

Check for Gaps:

We compare what we need with what the software can do, to see if anything is missing.

Define the Logic:

The plan is used to design the business rules and logic for the automated parts of the process.

Plan the Setup:

It helps us figure out exactly how to configure the software to work for our new process.

6. Add All the Important Details

To make the plan crystal clear, we add the final layers of detail beyond just the steps.

The Info:

We map out what data is needed, where it comes from, and where it goes.

The People:

We define who is responsible for each task and what their role is.

The Time:

We include deadlines and how long each step is expected to take.

Step 4: Making It Happen

Time to turn our plans into action — bringing the new, improved process to life.

1. Prove the New Plan is Worth It

We use the data and our new plan to create a final report that proves the changes are a smart investment.

Compare "Before" and "After":

We show a final comparison of the old way versus the new way to highlight the improvements.

Calculate the Payoff (ROI):

We use our starting scores to show that the proposed changes are worth the time and money.

Finalize the "Gap" Report:

We create a final document showing the differences between the old and new process.

3. Create the Final Hand-off Documents

We package everything into a complete set of documents to hand over to the teams that will build and manage the new process.

Instruction Manual:

We generate the detailed instructions for the IT team to build the new system.

Updated Job Descriptions:

We clearly define who is responsible for each step in the new process.

Clear Handoffs:

We document every point where work is passed from one person or system to another.

Get Final Approval:

We review everything with the project leaders to make sure everyone is on the same page.

2. Test the Plan with a Simulation

Before we build anything, we run the new plan through a simulation to see how it performs in different scenarios.

Find Future Bottlenecks:

We use the simulation to predict how the process will handle more work or unexpected problems.

Ask "What If?":

The simulation lets us safely test our ideas and answer questions before making realworld changes.

Final Check:

This confirms our new plan is a solid and realistic representation of how things should work.

4. Set the Rules for the Robots

If we're using software robots (RPA) for automation, the process rules must be 100% clear and predictable.

First, Stabilize the Process:

We must clean up and simplify the process *before* we automate it, so we don't teach the robots bad habits.

No Guesswork for the Bot:

The steps for the robot must be totally predictable, so it always knows what to do next.

Be 100% Precise:

The robot's instruction manual can't have any grey areas. Any confusion can lead to errors that are expensive to fix.

5. Set Up an Early Warning System

We shift from just looking at past problems to predicting and preventing future ones in real time.

Turn Insights into Actions:

We use everything we've learned to create concrete, automated improvement actions.

Prevent Bad Outcomes:

We set up a monitoring system that can recommend or trigger actions to stop a problem before it happens.

Predict the Future:

The system can predict things like how long a task will take or what the final outcome will be.

6. Build the Auto-Pilot System (DTO)

This is the final goal: creating a system that can monitor, diagnose, and fix itself automatically.

The ultimate goal is to create a **"Digital Twin"** of the company—a system that automatically takes action to manage risks.

Create Action Patterns:

We define a clear link between a specific problem and the specific action that will solve it.

Build an "Action Engine":

This engine constantly watches the process. If it spots a problem (like a bottleneck), it automatically triggers the correct action pattern.

Enable Self-Correction:

The engine's actions (like adding more resources or sending an alert) instantly update the system to solve the problem.

Step 5: Keep It Running & Make It Better

The work doesn't stop at launch. We continuously monitor, maintain, and enhance the process.

1. Go Live! The New Process is Now Standard

The new, improved "To-Be" process is now officially launched and becomes the new baseline for how we work.

Operate and Maintain:

The teams now use the new process in the live production environment every day.

The New "Normal":

The improved plan officially replaces the old one and is now the "As-Is" process.

Confirm Accuracy:

The blueprint we created now serves as the official guide for ensuring the solution works correctly.

2. Watch the Process in Real-Time

Instead of looking back at old data, we now monitor the process live to catch problems the moment they happen.

Always On:

Process analysis is most effective when it's applied to many processes all the time.

Live Conformance Checking:

We can now check if people are following the rules as it happens.

Instant Alerts:

The system can identify bottlenecks or other issues in currently running tasks and send out instant notifications.

3. Predict Problems Before They Happen

We use our data to predict when something might go wrong and step in to prevent it.

Recommend Actions:

The system can suggest or even trigger actions to keep things running smoothly.

Calculate the Impact:

It can estimate the chance of a bad outcome and figure out how a specific action might help fix it.

Act Early:

The system is smart enough to flag a potential issue early, leaving enough time to actually fix it.

4. The Auto-Pilot Feedback Loop

We automate the connection between spotting a problem and launching the solution, creating a self-correcting system.

Action-oriented analysis turns **diagnostics into concrete improvement actions** automatically.

The "Action Engine":

This engine constantly watches the process for any issues that break our rules or patterns.

Generate Solutions:

When it finds a problem, the engine automatically creates the right transactions to fix it.

Update the System:

The fixes (like changing routing rules or reassigning work) are applied instantly to the system.

5. Keep the Map Updated

Processes and businesses are always changing. The map must be maintained to always reflect reality.

Constantly Enhance:

We use new data and techniques to extend or improve our process maps over time.

Repair the Model:

We regularly alter the map so it perfectly reflects how work is actually being done.

Stay Balanced:

Any updates must still keep the map accurate, precise, and simple to understand.

6. Check on the Robots

After software robots (RPA) are deployed, we need to monitor them to make sure they are working correctly and efficiently.

Monitor the Full Lifecycle:

We watch the robots' performance from beginning to end.

Detect Problems:

This involves monitoring the deployed bots to spot any errors or slowdowns in their performance.

Answer Key Questions:

We find out the success rate of a bot and figure out what patterns cause it to fail.

Matus Selecky

- +421 948 607 626
- matusselecky.com
- matus@matusselecky.com